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Abstract 

In this paper, we investigate the impact of design chang- 
es on formal verification using the MDG (Multiway Deci- 
sion Graphs) tools. In particular, we would like to 
determine whether the design changes that make verifica- 
tion by interactive theorem proving simpler, also make ver- 
ification by automated decision diagram approach simpler 
as well. The design we consider is the Fairisle 4 by 4 switch 
fabric which has been used for real applications in the 
Cambridge ATM Fairisle network. A major consideration 
was that design change decisions should not compromise 
other design goals such as performance and functionality. 
The ’specijication and verification obtained in MDG dem- 
onstrated the expected positive impact of these design 
changes. 

1. Introduction 

As communication networks become all pervasive, the 
consequences of errors in the design or implementation of 
network components become increasingly important. The 
validation of network components is at best difficult. Simu- 
lation cannot uncover all errors in an implementation 
because only a small fraction of all possible cases can be 
considered. Formal verification is a different technique that 
can alleviate this problem, because the correctness of a for- 
mally verified design implicitly involves all cases regardless 
of the input values [6]. 

In this paper, we investigate whether the formal verifica- 
tion of an ATM design can be simplified by making design 
changes: that is whether a notion of “Design for Verifiabil- 
ity”, similar to that for testability, is of practical interest. Cur- 
zon [3][4] introduced this idea in the context of interactive 
proof. By using the HOL theorem prover [5], he suggested 
that the cost of verification in terms of time can be reduced 
by making appropriate design changes. Here, we investigate 
whether the same design changes also reduce the verification 
cost while using the MDG tools [l]. 

Our investigation involved the verification of an existing 
hardware design which was designed at the University of 
Cambridge. The component we considered is the Fairisle 4 
by 4 switching fabric which performs the actual switching of 
data cells and forms the heart of the ATM Fairisle commu- 
nication network [7]. The Cambridge Fairisle switch fabric 
verification had been done by Curzon [2] using the HOL the- 
orem prover. Tahar et al. [9] verified the same fabric in an 
automatic fashion using the MDG (Multiway Decision 
Graphs) tools. While verifying the original description of the 
switch fabric which we refer to as the Original switch fabric, 
Cunon et al. [4] noted the factors that were increasing the 
verification cost in terms of time. It became obvious that par- 
ticular aspects of the behavioral specification were length- 
ening the verification time by significant amounts. 
Moreover, by changing the behavior of the switch fabric, 
which is controlled by the environment of the switch fabric, 
i.e., port controllers, the problems would have been 
removed. While changing the actual design, Curzon et al. [4] 
were concerned that such changes should not affect the per- 
formance or functionality of the device. We will refer to the 
modified design which includes the suggested design 
changes during the interactive proof, as the Cleaned version. 

The outline of this paper is as follows: In Section 2, we 
describe the Original version of the Fairisle switch fabric in 
terms of behavioral and structural description. In Section 3, 
we describe the changes to the fabric that were suggested by 
the verification attempt using a theorem prover. In Section 4, 
we describe the verification of the Cleaned version in MDG. 
In Section 5, we compare and contrast different aspects of 
the Cleaned and Original versions of the switch fabric and 
Section 6 concludes the paper. 

2. The Fairisle ATM Switch . 

The Fairisle ATM switch consists of three types of com- 
ponents: input port controllers, outputport controllers and a 
switch fabric (Figure 1). It switches ATM cells from the 
input ports to the output ports. A cell consists of a header (a 
one-byte tag containing routing information as shown in 
Figure 2) and a fixed number of data bytes. The port con- 
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trollers synchronize incoming data cells, append headers to 
the front of the cells, and send them to the fabric. The fabric 
waits for cells to arrive, strips off the tags, arbitrates between 
cells destined to the same output port, sends successful cells 
to the appropriate output port controllers, and passes 
acknowledgments from the output port controllers to the 
input port controllers. If different port controllers inject cells 
destined for the same output port controller into the fabric at 
the same time, then only one will succeed and the others 
must retry later. The header also includes apriority bit that is 
used by the fabric for arbitration which takes place in two 
stages. 

f S  
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High priority cells are given precedence. The choice 
within both priorities is made on a round-robin basis. The 
input controllers are informed of whether their cells were 
successful using acknowledgment signals. The fabric sends 
a negative acknowledgment to the unsuccessful input ports, 
but passes the acknowledgment from the requested output 
port controllers to the successful input port. The port con- 
trollers and the switch fabric all use the same clock, hence 
bytes are received synchronously on all links. They also use 
a higher-level cell frame clock-theframe start cf,) signal 
(Figure 1). It ensures that the port controllers inject data cells 
into the fabric so that the headers arrive together. Here we are 
concerned with the verification of the switchfabric. 

I 

I 
mute priority active 

3. MDG Modeling of the Cleaned Fabric 

The new design of the Fairisle switch fabric incorporates 
the following changes without any significant loss of func- 
tionality: 

The header arrives at least 5 cycles after the frame 
start signal. 

The header and frame start must not occur together. 
Internal delays were added to the datapaths so that 
no extra cell byte is lost. 

Minor changes to the internal timing of the data 
switch so it reads two grant signals at a more 
sensible time. 

Inspired by [3][4] and the verification of the Original 
design of the Fairisle switch fabric using the MDG tools [9], 
we derived an MDG description of the Cleaned version of 
the switch fabric. The behavioral specification of the switch 
fabric is represented in the form of an Abstract State 
Machine (ASM). We investigated the modified behavior of 
the switch fabric under the control of the environment. 

3.1. Environment for the port controllers 

The timing-diagrams in Figure 3 represent the expected 
behavior of the Cleaned version of the switch fabric during 
an active frame. Based on this and similar sets of timing-dia- 
grams we derived our environment state machine which con- 
trols the changed input-output behavior of the switch fabric. 
After theframe start (at time ts), the switch waits for the 
headers to appear on the input lines Din. After the arrival of 
the headers (at time th). an arbitration between the inputs 
clashing for the same output is done in at most 2 cycles. The 
successful cells (bytes that follow the headers on Din) are 
transferred to the corresponding output port (Dour) with a 
delay of 5 cycles while acknowledgment (Ah) starting at 
time th+3 traverse in the opposite direction without any syn- 
chronous delay. Note that the last 5 cycles te-1 to re-5 of a 
frame do not accept any data. 
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Figure 3. Timing behavior during an active frame 

We modified the original environment state machine as 
given in the verification design documentation of the Fair- 
isle switch 191 to comply with the modifications suggested 
by Curzon et al. 141. Figure 4 shows the modified environ- 
ment state machine which reflects the above timing diagram 
for a 64 clock cycles frame. In [lo], we describe in details 
the four modified assumptions about the environment of the 
switch fabric and the reasons of the modifications from [9]. 

~~ 

Figure 4. The new environment state machine 
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In Figure 4, there are 64 states enumerated by integers 
(using MDG-HDL, state variables can be described as acon- 
Crete variable of sort [l ,  2, .., 641). State transitions are 
denoted by arrows. In analogy to the environment state 
machine of [9],  we used&, h and di to denote theframe start 
signal, the header of an active cell and the data processing in 
that state, respectively. The notation (di) in Figure 4 indicates 
that data is switched to the output port in that state. 

3.2. Behavioral Specification 

Inspired by the constraints from the above environment 
state machine which represents the port controller behavior, 
we describe in the following the overall behavior of the 
switch fabric. It can be expressed in the form of a finite state 
machine (ASM) having 12 states (Figure 5). To simplify the 
presentation, the symbols s and h denote a frame starz (f,=l) 
and the arrival of headers (active bit set in at least one Din), 
respectively; "-" denotes negation, and the symbols a ,  d or 
r inside a state represent the processing of the 
acknowledgment output (Aout), the data output (Dout) or 
round-robin arbitration, respectively. 

Figure 5. ASM of the Cleaned switch fabric 

Two time axes illustrate the time units of a frame to which 
the transitions correspond. The symbols ts and t, represent 
the arrival time of a frame start signal and the arrival time of 
a header, respectively. The end time (f,) of a frame is not 
given, since it is the same as t ,  of the next frame. State 1 is the 
initial state from which a frame may begin without any 
delay. This complies with the first constraint on the environ- 
ment of the switch. After a waiting loop for the firstframe 
start in state 1, states 2 to 6 describe the behavior of the fabric 
after the arrival of aframe start, with at least a five-cycle 
delay before the arrival of the headers. This delay represents 
the second constraint on the environment. The waiting loop 
for the arrival of the headers in state 6 is shown by a natural 
number j. States 7 to 12 describe the behavior of the fabric 

after the arrival of the headers. When the headers arrive, the 
frame start signal must not arrive before at least 6 cycles to 
comply with the third constraint on the environment. The 
arrival of a frame start in state 12 complies with the last con- 
straint of the environment which requires that the next frame 
does not arrive before 11 cycles from the currentframe start. 
After arbitration (state 9), the switch fabric transfers the 
acknowledgments in each cycle of a frame and switches 
data, delayed by three cycles. This delay is represented using 
the sequence of transitions from state 9 to 12. The loop in 
state 12 represents the transmission of data and acknowledg- 
ments in the remaining cycles of the cell (indicated by a nat- 
ural number k). The arrival of a frame sfarf in state 12 marks 
the beginning of another frame. Here, a new sequence of 
state transitions along the t, axis progresses similarly as in 
states 2,3,4,5 and 6 described above. 

The Original ASM of the switch fabric used in the MDG 
verification of the Fabric is given in [9]. To model the com- 
putation in MDG of the acknowledgments, the data outputs 
and the round-robin arbitration, we use the techniques 
described in [9]. 

3.3. Structural Implementation 

Figure 6 shows a block diagram of the switch fabric 
implementation. It consists of an arbitration unit, an 
acknowledgment unit and a dataswitch unit. The arbitration 
unit is composed of a Timing unit, a Decoder, a Priority Fil- 
ter and a set of Arbiters. For more details about the imple- 
mentation refer to [2]. 

To reflect the modifications suggested in [4], minor 
changes were made to the Timing unit, Arbiters, control path 
between the Arbitration and Dataswitch units and datapath 
to the Dataswitch unit of the original implementation. The 
modified Timing module ensures that the header and frame 
start signals must not occur together. The frame start signal 
just gets there 5 cycles later as required to make it trigger 5 
cycles later. The shaded boxes in Figure 6 represent the mod- 
ified modules in the Cleaned implementation. 

I I41 I ...________.________....... ~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  !: _____: 

Figure 6. Cleaned fabric implementation 
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The Arbiters generate the output disable and grant sig- 
nals. The Original Arbiters disable the outputs one cycle 
earlier than is desirable. On each cycle, to determine which 
output the current byte should be sent to, the Dataswitch 
consults the two bits of the grant control signal produced by 
the Arbiter. One of those bits is sampled on the cycle before 
it is used, but the other is sampled on the same cycle. This 
ultimately means that the grant signal for the last cycle can- 
not be used as its value changes between the bits being sam- 
pled. The problem is removed by adding extra delays across 
the path to the Dataswitch. The Cleaned Arbiters disable the 
outputs one cycle later than the Original one, so that the last 
bytes of a cell are not ignored. 

The Dataswitch module chooses a word to be output to 
each of the output ports. It delays the data long enough for an 
arbitration decision to be made. To comply with the extra 
delay in the arbitration unit, minor changes had been made to 
its intemal timing so it can read the two grant lines at a more 
sensible time. To do so, an extra register is added across the 
datapath to the Dataswitch unit. 

4. MDG Verification of the Cleaned Fabric 

The Cleaned version was formally verified, based on the 
modifications described in the previous section. In the fol- 
lowing two sub-sections we describe property checking and 
sequential equivalence checking of this modified switch fab- 
ric. 

4.1. Property Checking 

We applied property checking to ascertain that both 
implementation and specification of the switch fabric satisfy 
some specific requirements while working under the control 
of the new environment, i.e., port controllers. Sample prop- 
erties are correct circuit-reset and correct data-routing. 
Using the time points rs, rh and re as introduced in Section 
3.1, we described several properties which reflect the mod- 
ified behavior of the switch fabric. The verification of the 
Cleaned fabric was done using four properties similar to 
those described in [9]. 

Properties I and 2 deal with the reset behavior of the cir- 
cuit, while Property 3 and 4 describe specific behaviors of 
the switching of cells. 

Property I: From rs+5 to rh+5, the default value (zero) 
appears on the data output port Douri, where zero is a 
generic constant and i = 0, ..., 3. 
Property 2: From rs+l to rh+2, the default (0) appears 
on the acknowledgment output port Aourj where i = 
0, ..., 3. 
Property 3: From rh+6 to fe-1 (i.e., 1 cycle before the 
next fs), if input port i, i ={0,..,3}, chooses output portj, 

j ={0,..,3}, with the priority bit set in the header, and no 
other input ports have their priority bits set, the value 
on D O U ~  will be equal to that of Dini 5 clock cycles ear- 
lier. 

Property 4: From th+3 to re-1 if input port i chooses 
output port j with the priority bit set in the header, and 
no other input ports have the priority bit set, the value 
on Aoutj will be that of Ahi .  

I I I I  I 

I SUtC 

Figure 7. Composed state machine for property 
checking 

To verify these safety properties, we composed the fabric 
(specification or implementation) with the environment 
state machine as shown in Figure 7. This verification 
approach is inspired by the technique described in [9]. By 
using the property checking facility of the MDG tools, we 
checked in each reachable state if the outputs satisfy the 
logic expression of the property which should be true over all 
reachable states. The experimental results from the verifica- 
tion of all the properties stated above for both implementa- 
tion and specification, are given in Table l. All experimental 
results were obtained on a Sun Ultra SPARC 2 workstation 
(296MHz / 768 MB) and include CPU time in sec., memory 
usage in MB and the number of MDG nodes generated. 

4.2. Equivalence Checking 

The original design of the switch fabric was described at 
the gate-level in @dos HDL. The authors in [9] translated 
the Qudos HDL description into MDG-HDL using the same 
collection of gates. By abstracting the data lines from a bun- 
dle of bits to a compact word of abstract sort, we also obtain 
an abstract RTL model of the switch fabric. This RTL model 
will be equivalent to the original gate-level description if it 
produces the same output as the original gate-level for all 
input sequences. We adopted the modifications mentioned in 
Section 3.3 to both the gate-level and RTL models of the 
switch fabric to reflect the design changes. We then pro- 
ceeded with the equivalence checking between gate-level 
and RTL description using the sequential equivalence 
checking of MDG. This was achieved after instantiation of 
the RTL model to 8-bits [9]. 
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Using the sequential equivalence checking facility of the 
MDG tool, we also verified that the abstract RTL implemen- 
tation of the switch fabric complied with the new specifica- 
tion of the behavioral model described in Section 3.2. We 
obtained a complete verification of the switch fabric from a 
behavioral specification down to the gate-level implementa- 
tion. The experimental results are given in Table l. 

Table 1. Verification of the Cleaned version 

Verification 
Phases 

Reach. Analv. 
SpeciJication 

Implementation 

Prop. Checking 
Specijication 

Prop. 1 
Prop. 2 
Prop. 3 
Prop. 4 

Prop. 1 
Prop. 2 
Prop. 3 
Prop. 4 

Implementation 

Equv. Checking 
RTL vs. Beh. + 
RTL vs. Gate 

CPU 
time (s) 

180.40 
219.22 

186.65 
199.67 
195.23 
160.43 

173.81 
151.53 
166.21 
164.76 

1934.56 
30.85 

5. Summary of Results 

Memory 
(MB) 

32 
34 

27 
23 
23 
28 

32 
31 
30 
32 

148 
13 

No. of 
Nodes 

73157 
90208 

74948 
75287 
73020 
72843 

88085 
89738 
90554. 
90933 

230798 
13899 

The motivation of this work was to compare the formal 
verification, in terms of time, of the Cleaned version of the 
Fairisle ATM switch fabric with the Original version using 
MDG tool. Timing aspect of formal verification is an impor- 
tant issue to the industrial community. We compare these 
two versions with respect to machine-time and human-time. 

Human time spent on the verification of the Original ver- 
sion was longer than that of the Cleaned version. The 
amount of work in re-running a verification of a modified 
design is minimal compared to the initial effort since the lat- 
ter includes all the modeling aspect. In the verification by 
MDG tools, manual intervention is needed for variables 
ordering which has an impact on the verification time. 

In the verification of the Original version, much of the 
time was spent on determining a suitable variable ordering. 
As there were no major changes to the Original version, we 
did not spend much time on redetermining a suitable vari- 
able ordering. The translation of the original @dos HDL 

design description to the MDG-HDL gate-level structural 
model took about one person-week as described by Tahar et 
aZ. [8]. The time spent on the modification of the structural 
description of the design for the Cleaned version was four 
person-days. Because the verifier needs to understand the 
design thoroughly, the time spent for understanding and 
writing the behavioral specification of the Original version 
was about four person-weeks. On the other hand, for the 
Cleaned version it took two person-weeks. In the verifica- 
tion of the Original version, the time required to setup four 
properties, to build the environment state machine, to con- 
duct the property checking both on the implementation and 
the specification and to interpret the results was about three 
person-weeks. For the Cleaned version, building a new envi- 
ronment state machine and conducting the property check- 
ing on both the implementation and the specification took 
about two person-weeks. The equivalence checking of the 
RTL implementation with its behavioral specification and 
the RTL model against the gate-level model of the Original 
version required about two person-weeks due to the adop- 
tion of abstraction mechanisms and correction of description 
errors for the RTL implementation. On the other hand for the 
Cleaned version, it took about one person-week. The sum- 
mary of the differences between the Original version and the 
Cleaned version, in terms of human-time taken during the 
verification phase, is given in Table 2. 

Table 2. Summary of human-time taken 

Cleaned Original Verification Phase version version I 
Behavioral spec. 
modeling 

Gate and RTL impl. 
modifications 

Env. state machine and 
property checking 

Eauiv. Checking: 
RTLvs.Beh.Spec.+ 1 One 1 Two 
RTL vs. Gate-level person-week person-weeks 

To demonstrate the reduced verification time we compare 
the machine-time taken to complete the Cleaned version ver- 
ification with that for the Original version. The machine- 
time taken by the Cleaned version for both the Property 
checking and the Equivalence checking was reduced by a 
significant amount of CPU time to that of the Original ver- 
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sion. The differences between the verification of the Cleaned 
and the Original versions are illustrated with respect to CPU 
time taken, memory usages and MDG nodes generated 
(compare Tables 1 and 3). 

Table 3. Verifications of the Original version 

Verification 
Phases 

Reach. Analy. 
Spec8cation 

Implementation 

Prop. Checking 
Specijication 

Prop. 1 
Prop. 2 
PrOp.3 
PrOp.4 

Implementation 
Prop. 1 
Prop.2 
PrOp.3 
Prop.4 

Equv. Checking 
RTL vs. Beh + 
RTL vs. Gate 

CPU Memory 
time@) (MB) 

188.59 36 
232.74 35 

251.53 25 
279.02 26 
257.52 25 
236.42 25 

235.34 34 
233.49 35 
205.04 33 
268.75 84 

2210.22 162 
30.85 13 

6. Conclusions 

No. of 
Nodes 

74130 
90319 

74554 
76265 
74636 
74441 

92229 
93882 
92052 

225486 

245707 
13899 

In this paper, we have demonstrated that design for veri- 
fiability can have a significant effect on the speed of verifi- 
cation using automated decision diagram based technique. 
The same result was obtained by using interactive proof with 
the HOL theorem prover for the same design verification. 
The difference in nature of these two verification methodol- 
ogies suggests design for verifiability can be widely appli- 
cable. One of the motivations of this work was to show that 
designers can ease the verification task without compromis- 
ing other design considerations. Our investigation suggests 
that one way this can be done is by ensuring that the oper- 
ating assumptions of modules are as few and as simple as 
possible. The designer may have to work a little harder to 
ease the VI- ifier’s task. However, the result is a much cleaner 
design. 1, ‘, as can be done early in the design cycle. The 
developri . it Qf design constraints for formal verification 
would bc 2:ieful. This is vital for safety-critical systems 
where formal verification techniques are most likely to be 
used. 

The implementation we considered for this investigation 
is the Fairisle 4 by 4 switch fabric which forms the heart of 
the ATM Fairisle communication network. We made some 
changes to the timing constraints of the fabric which is con- 
trolled by the environment of the fabric, i.e., port controllers. 
By changing these timing constraints we made the operating 
assumptions of the fabric simpler and cleaner. We also 
changed the design of the Arbiters, the Timing unit, the con- 
trol path between the Arbitration and Dataswitch unit and 
datapath to the Dataswitch unit without loss of any signifi- 
cant functionality. The verification time taken by both 
human and machine for the modified design was much less 
than that of the original design as demonstrated in the pre- 
vious section. Based on the above statistics we can conclude 
that the verification time can be saved if a notion of “design 
for verifiability” is integrated into the design process itself. 
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