
The Impact of Design Changes on Verification Using MDGs

M. Hasan Zobair, Sofikne Tahar and Paul CurzonQ

ECE Dept., Concordia University, Montreal, Canada
Email: { mh-zobai, tahar} @ ece.concordia.ca

§School of Computing Science, Middlesex University, London, U.K.
Email: p.curzon @ mdx.ac.uk

Abstract

In this paper, we investigate the impact of design chang-
es on formal verification using the MDG (Multiway Deci-
sion Graphs) tools. In particular, we would like to
determine whether the design changes that make verifica-
tion by interactive theorem proving simpler, also make ver-
ification by automated decision diagram approach simpler
as well. The design we consider is the Fairisle 4 by 4 switch
fabric which has been used for real applications in the
Cambridge ATM Fairisle network. A major consideration
was that design change decisions should not compromise
other design goals such as performance and functionality.
The ’specijication and verification obtained in MDG dem-
onstrated the expected positive impact of these design
changes.

1. Introduction

As communication networks become all pervasive, the
consequences of errors in the design or implementation of
network components become increasingly important. The
validation of network components is at best difficult. Simu-
lation cannot uncover all errors in an implementation
because only a small fraction of all possible cases can be
considered. Formal verification is a different technique that
can alleviate this problem, because the correctness of a for-
mally verified design implicitly involves all cases regardless
of the input values [6].

In this paper, we investigate whether the formal verifica-
tion of an ATM design can be simplified by making design
changes: that is whether a notion of “Design for Verifiabil-
ity”, similar to that for testability, is of practical interest. Cur-
zon [3][4] introduced this idea in the context of interactive
proof. By using the HOL theorem prover [5], he suggested
that the cost of verification in terms of time can be reduced
by making appropriate design changes. Here, we investigate
whether the same design changes also reduce the verification
cost while using the MDG tools [l].

Our investigation involved the verification of an existing
hardware design which was designed at the University of
Cambridge. The component we considered is the Fairisle 4
by 4 switching fabric which performs the actual switching of
data cells and forms the heart of the ATM Fairisle commu-
nication network [7]. The Cambridge Fairisle switch fabric
verification had been done by Curzon [2] using the HOL the-
orem prover. Tahar et al. [9] verified the same fabric in an
automatic fashion using the MDG (Multiway Decision
Graphs) tools. While verifying the original description of the
switch fabric which we refer to as the Original switch fabric,
Cunon et al. [4] noted the factors that were increasing the
verification cost in terms of time. It became obvious that par-
ticular aspects of the behavioral specification were length-
ening the verification time by significant amounts.
Moreover, by changing the behavior of the switch fabric,
which is controlled by the environment of the switch fabric,
i.e., port controllers, the problems would have been
removed. While changing the actual design, Curzon et al. [4]
were concerned that such changes should not affect the per-
formance or functionality of the device. We will refer to the
modified design which includes the suggested design
changes during the interactive proof, as the Cleaned version.

The outline of this paper is as follows: In Section 2, we
describe the Original version of the Fairisle switch fabric in
terms of behavioral and structural description. In Section 3,
we describe the changes to the fabric that were suggested by
the verification attempt using a theorem prover. In Section 4,
we describe the verification of the Cleaned version in MDG.
In Section 5, we compare and contrast different aspects of
the Cleaned and Original versions of the switch fabric and
Section 6 concludes the paper.

2. The Fairisle ATM Switch .

The Fairisle ATM switch consists of three types of com-
ponents: input port controllers, outputport controllers and a
switch fabric (Figure 1). It switches ATM cells from the
input ports to the output ports. A cell consists of a header (a
one-byte tag containing routing information as shown in
Figure 2) and a fixed number of data bytes. The port con-

0-7803-5957-7/00/$10.00 0 2000 IEEE

173

http://mdx.ac.uk

trollers synchronize incoming data cells, append headers to
the front of the cells, and send them to the fabric. The fabric
waits for cells to arrive, strips off the tags, arbitrates between
cells destined to the same output port, sends successful cells
to the appropriate output port controllers, and passes
acknowledgments from the output port controllers to the
input port controllers. If different port controllers inject cells
destined for the same output port controller into the fabric at
the same time, then only one will succeed and the others
must retry later. The header also includes apriority bit that is
used by the fabric for arbitration which takes place in two
stages.

f S

I I I
spare (unused)

I I I

High priority cells are given precedence. The choice
within both priorities is made on a round-robin basis. The
input controllers are informed of whether their cells were
successful using acknowledgment signals. The fabric sends
a negative acknowledgment to the unsuccessful input ports,
but passes the acknowledgment from the requested output
port controllers to the successful input port. The port con-
trollers and the switch fabric all use the same clock, hence
bytes are received synchronously on all links. They also use
a higher-level cell frame clock-theframe start cf,) signal
(Figure 1). It ensures that the port controllers inject data cells
into the fabric so that the headers arrive together. Here we are
concerned with the verification of the switchfabric.

I

I
mute priority active

3. MDG Modeling of the Cleaned Fabric

The new design of the Fairisle switch fabric incorporates
the following changes without any significant loss of func-
tionality:

The header arrives at least 5 cycles after the frame
start signal.

The header and frame start must not occur together.
Internal delays were added to the datapaths so that
no extra cell byte is lost.

Minor changes to the internal timing of the data
switch so it reads two grant signals at a more
sensible time.

Inspired by [3][4] and the verification of the Original
design of the Fairisle switch fabric using the MDG tools [9],
we derived an MDG description of the Cleaned version of
the switch fabric. The behavioral specification of the switch
fabric is represented in the form of an Abstract State
Machine (ASM). We investigated the modified behavior of
the switch fabric under the control of the environment.

3.1. Environment for the port controllers

The timing-diagrams in Figure 3 represent the expected
behavior of the Cleaned version of the switch fabric during
an active frame. Based on this and similar sets of timing-dia-
grams we derived our environment state machine which con-
trols the changed input-output behavior of the switch fabric.
After theframe start (at time ts), the switch waits for the
headers to appear on the input lines Din. After the arrival of
the headers (at time th). an arbitration between the inputs
clashing for the same output is done in at most 2 cycles. The
successful cells (bytes that follow the headers on Din) are
transferred to the corresponding output port (Dour) with a
delay of 5 cycles while acknowledgment (Ah) starting at
time th+3 traverse in the opposite direction without any syn-
chronous delay. Note that the last 5 cycles te-1 to re-5 of a
frame do not accept any data.

&=-I

Am

Aovl

.un

DIU

Dart

t. *I 4 *, .4 & * I tf *, *. * I - 4 1.4 trl tr' C' Cl 4
h

Figure 3. Timing behavior during an active frame

We modified the original environment state machine as
given in the verification design documentation of the Fair-
isle switch 191 to comply with the modifications suggested
by Curzon et al. 141. Figure 4 shows the modified environ-
ment state machine which reflects the above timing diagram
for a 64 clock cycles frame. In [lo], we describe in details
the four modified assumptions about the environment of the
switch fabric and the reasons of the modifications from [9].

~~

Figure 4. The new environment state machine

174

In Figure 4, there are 64 states enumerated by integers
(using MDG-HDL, state variables can be described as acon-
Crete variable of sort [l , 2, .., 641). State transitions are
denoted by arrows. In analogy to the environment state
machine of [9], we used&, h and di to denote theframe start
signal, the header of an active cell and the data processing in
that state, respectively. The notation (di) in Figure 4 indicates
that data is switched to the output port in that state.

3.2. Behavioral Specification

Inspired by the constraints from the above environment
state machine which represents the port controller behavior,
we describe in the following the overall behavior of the
switch fabric. It can be expressed in the form of a finite state
machine (ASM) having 12 states (Figure 5). To simplify the
presentation, the symbols s and h denote a frame starz (f,=l)
and the arrival of headers (active bit set in at least one Din),
respectively; "-" denotes negation, and the symbols a , d or
r inside a state represent the processing of the
acknowledgment output (Aout), the data output (Dout) or
round-robin arbitration, respectively.

Figure 5. ASM of the Cleaned switch fabric

Two time axes illustrate the time units of a frame to which
the transitions correspond. The symbols ts and t, represent
the arrival time of a frame start signal and the arrival time of
a header, respectively. The end time (f,) of a frame is not
given, since it is the same as t , of the next frame. State 1 is the
initial state from which a frame may begin without any
delay. This complies with the first constraint on the environ-
ment of the switch. After a waiting loop for the firstframe
start in state 1, states 2 to 6 describe the behavior of the fabric
after the arrival of aframe start, with at least a five-cycle
delay before the arrival of the headers. This delay represents
the second constraint on the environment. The waiting loop
for the arrival of the headers in state 6 is shown by a natural
number j. States 7 to 12 describe the behavior of the fabric

after the arrival of the headers. When the headers arrive, the
frame start signal must not arrive before at least 6 cycles to
comply with the third constraint on the environment. The
arrival of a frame start in state 12 complies with the last con-
straint of the environment which requires that the next frame
does not arrive before 11 cycles from the currentframe start.
After arbitration (state 9), the switch fabric transfers the
acknowledgments in each cycle of a frame and switches
data, delayed by three cycles. This delay is represented using
the sequence of transitions from state 9 to 12. The loop in
state 12 represents the transmission of data and acknowledg-
ments in the remaining cycles of the cell (indicated by a nat-
ural number k). The arrival of a frame sfarf in state 12 marks
the beginning of another frame. Here, a new sequence of
state transitions along the t, axis progresses similarly as in
states 2,3,4,5 and 6 described above.

The Original ASM of the switch fabric used in the MDG
verification of the Fabric is given in [9]. To model the com-
putation in MDG of the acknowledgments, the data outputs
and the round-robin arbitration, we use the techniques
described in [9].

3.3. Structural Implementation

Figure 6 shows a block diagram of the switch fabric
implementation. It consists of an arbitration unit, an
acknowledgment unit and a dataswitch unit. The arbitration
unit is composed of a Timing unit, a Decoder, a Priority Fil-
ter and a set of Arbiters. For more details about the imple-
mentation refer to [2].

To reflect the modifications suggested in [4], minor
changes were made to the Timing unit, Arbiters, control path
between the Arbitration and Dataswitch units and datapath
to the Dataswitch unit of the original implementation. The
modified Timing module ensures that the header and frame
start signals must not occur together. The frame start signal
just gets there 5 cycles later as required to make it trigger 5
cycles later. The shaded boxes in Figure 6 represent the mod-
ified modules in the Cleaned implementation.

I I41 I ...________.________....... ~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ !: _____:

Figure 6. Cleaned fabric implementation

175

The Arbiters generate the output disable and grant sig-
nals. The Original Arbiters disable the outputs one cycle
earlier than is desirable. On each cycle, to determine which
output the current byte should be sent to, the Dataswitch
consults the two bits of the grant control signal produced by
the Arbiter. One of those bits is sampled on the cycle before
it is used, but the other is sampled on the same cycle. This
ultimately means that the grant signal for the last cycle can-
not be used as its value changes between the bits being sam-
pled. The problem is removed by adding extra delays across
the path to the Dataswitch. The Cleaned Arbiters disable the
outputs one cycle later than the Original one, so that the last
bytes of a cell are not ignored.

The Dataswitch module chooses a word to be output to
each of the output ports. It delays the data long enough for an
arbitration decision to be made. To comply with the extra
delay in the arbitration unit, minor changes had been made to
its intemal timing so it can read the two grant lines at a more
sensible time. To do so, an extra register is added across the
datapath to the Dataswitch unit.

4. MDG Verification of the Cleaned Fabric

The Cleaned version was formally verified, based on the
modifications described in the previous section. In the fol-
lowing two sub-sections we describe property checking and
sequential equivalence checking of this modified switch fab-
ric.

4.1. Property Checking

We applied property checking to ascertain that both
implementation and specification of the switch fabric satisfy
some specific requirements while working under the control
of the new environment, i.e., port controllers. Sample prop-
erties are correct circuit-reset and correct data-routing.
Using the time points rs, rh and re as introduced in Section
3.1, we described several properties which reflect the mod-
ified behavior of the switch fabric. The verification of the
Cleaned fabric was done using four properties similar to
those described in [9].

Properties I and 2 deal with the reset behavior of the cir-
cuit, while Property 3 and 4 describe specific behaviors of
the switching of cells.

Property I: From rs+5 to rh+5, the default value (zero)
appears on the data output port Douri, where zero is a
generic constant and i = 0, ..., 3.
Property 2: From rs+l to rh+2, the default (0) appears
on the acknowledgment output port Aourj where i =
0, ..., 3.
Property 3: From rh+6 to fe-1 (i.e., 1 cycle before the
next fs), if input port i, i ={0,..,3}, chooses output portj,

j ={0,..,3}, with the priority bit set in the header, and no
other input ports have their priority bits set, the value
on D O U ~ will be equal to that of Dini 5 clock cycles ear-
lier.

Property 4: From th+3 to re-1 if input port i chooses
output port j with the priority bit set in the header, and
no other input ports have the priority bit set, the value
on Aoutj will be that of Ahi .

I I I I I

I SUtC

Figure 7. Composed state machine for property
checking

To verify these safety properties, we composed the fabric
(specification or implementation) with the environment
state machine as shown in Figure 7. This verification
approach is inspired by the technique described in [9]. By
using the property checking facility of the MDG tools, we
checked in each reachable state if the outputs satisfy the
logic expression of the property which should be true over all
reachable states. The experimental results from the verifica-
tion of all the properties stated above for both implementa-
tion and specification, are given in Table l. All experimental
results were obtained on a Sun Ultra SPARC 2 workstation
(296MHz / 768 MB) and include CPU time in sec., memory
usage in MB and the number of MDG nodes generated.

4.2. Equivalence Checking

The original design of the switch fabric was described at
the gate-level in @dos HDL. The authors in [9] translated
the Qudos HDL description into MDG-HDL using the same
collection of gates. By abstracting the data lines from a bun-
dle of bits to a compact word of abstract sort, we also obtain
an abstract RTL model of the switch fabric. This RTL model
will be equivalent to the original gate-level description if it
produces the same output as the original gate-level for all
input sequences. We adopted the modifications mentioned in
Section 3.3 to both the gate-level and RTL models of the
switch fabric to reflect the design changes. We then pro-
ceeded with the equivalence checking between gate-level
and RTL description using the sequential equivalence
checking of MDG. This was achieved after instantiation of
the RTL model to 8-bits [9].

176

Using the sequential equivalence checking facility of the
MDG tool, we also verified that the abstract RTL implemen-
tation of the switch fabric complied with the new specifica-
tion of the behavioral model described in Section 3.2. We
obtained a complete verification of the switch fabric from a
behavioral specification down to the gate-level implementa-
tion. The experimental results are given in Table l.

Table 1. Verification of the Cleaned version

Verification
Phases

Reach. Analv.
SpeciJication

Implementation

Prop. Checking
Specijication

Prop. 1
Prop. 2
Prop. 3
Prop. 4

Prop. 1
Prop. 2
Prop. 3
Prop. 4

Implementation

Equv. Checking
RTL vs. Beh. +
RTL vs. Gate

CPU
time (s)

180.40
219.22

186.65
199.67
195.23
160.43

173.81
151.53
166.21
164.76

1934.56
30.85

5. Summary of Results

Memory
(MB)

32
34

27
23
23
28

32
31
30
32

148
13

No. of
Nodes

73157
90208

74948
75287
73020
72843

88085
89738
90554.
90933

230798
13899

The motivation of this work was to compare the formal
verification, in terms of time, of the Cleaned version of the
Fairisle ATM switch fabric with the Original version using
MDG tool. Timing aspect of formal verification is an impor-
tant issue to the industrial community. We compare these
two versions with respect to machine-time and human-time.

Human time spent on the verification of the Original ver-
sion was longer than that of the Cleaned version. The
amount of work in re-running a verification of a modified
design is minimal compared to the initial effort since the lat-
ter includes all the modeling aspect. In the verification by
MDG tools, manual intervention is needed for variables
ordering which has an impact on the verification time.

In the verification of the Original version, much of the
time was spent on determining a suitable variable ordering.
As there were no major changes to the Original version, we
did not spend much time on redetermining a suitable vari-
able ordering. The translation of the original @dos HDL

design description to the MDG-HDL gate-level structural
model took about one person-week as described by Tahar et
aZ. [8]. The time spent on the modification of the structural
description of the design for the Cleaned version was four
person-days. Because the verifier needs to understand the
design thoroughly, the time spent for understanding and
writing the behavioral specification of the Original version
was about four person-weeks. On the other hand, for the
Cleaned version it took two person-weeks. In the verifica-
tion of the Original version, the time required to setup four
properties, to build the environment state machine, to con-
duct the property checking both on the implementation and
the specification and to interpret the results was about three
person-weeks. For the Cleaned version, building a new envi-
ronment state machine and conducting the property check-
ing on both the implementation and the specification took
about two person-weeks. The equivalence checking of the
RTL implementation with its behavioral specification and
the RTL model against the gate-level model of the Original
version required about two person-weeks due to the adop-
tion of abstraction mechanisms and correction of description
errors for the RTL implementation. On the other hand for the
Cleaned version, it took about one person-week. The sum-
mary of the differences between the Original version and the
Cleaned version, in terms of human-time taken during the
verification phase, is given in Table 2.

Table 2. Summary of human-time taken

Cleaned Original Verification Phase version version I
Behavioral spec.
modeling

Gate and RTL impl.
modifications

Env. state machine and
property checking

Eauiv. Checking:
RTLvs.Beh.Spec.+ 1 One 1 Two
RTL vs. Gate-level person-week person-weeks

To demonstrate the reduced verification time we compare
the machine-time taken to complete the Cleaned version ver-
ification with that for the Original version. The machine-
time taken by the Cleaned version for both the Property
checking and the Equivalence checking was reduced by a
significant amount of CPU time to that of the Original ver-

177

sion. The differences between the verification of the Cleaned
and the Original versions are illustrated with respect to CPU
time taken, memory usages and MDG nodes generated
(compare Tables 1 and 3).

Table 3. Verifications of the Original version

Verification
Phases

Reach. Analy.
Spec8cation

Implementation

Prop. Checking
Specijication

Prop. 1
Prop. 2
PrOp.3
PrOp.4

Implementation
Prop. 1
Prop.2
PrOp.3
Prop.4

Equv. Checking
RTL vs. Beh +
RTL vs. Gate

CPU Memory
time@) (MB)

188.59 36
232.74 35

251.53 25
279.02 26
257.52 25
236.42 25

235.34 34
233.49 35
205.04 33
268.75 84

2210.22 162
30.85 13

6. Conclusions

No. of
Nodes

74130
90319

74554
76265
74636
74441

92229
93882
92052

225486

245707
13899

In this paper, we have demonstrated that design for veri-
fiability can have a significant effect on the speed of verifi-
cation using automated decision diagram based technique.
The same result was obtained by using interactive proof with
the HOL theorem prover for the same design verification.
The difference in nature of these two verification methodol-
ogies suggests design for verifiability can be widely appli-
cable. One of the motivations of this work was to show that
designers can ease the verification task without compromis-
ing other design considerations. Our investigation suggests
that one way this can be done is by ensuring that the oper-
ating assumptions of modules are as few and as simple as
possible. The designer may have to work a little harder to
ease the VI- ifier’s task. However, the result is a much cleaner
design. 1, ‘, as can be done early in the design cycle. The
developri . it Qf design constraints for formal verification
would bc 2:ieful. This is vital for safety-critical systems
where formal verification techniques are most likely to be
used.

The implementation we considered for this investigation
is the Fairisle 4 by 4 switch fabric which forms the heart of
the ATM Fairisle communication network. We made some
changes to the timing constraints of the fabric which is con-
trolled by the environment of the fabric, i.e., port controllers.
By changing these timing constraints we made the operating
assumptions of the fabric simpler and cleaner. We also
changed the design of the Arbiters, the Timing unit, the con-
trol path between the Arbitration and Dataswitch unit and
datapath to the Dataswitch unit without loss of any signifi-
cant functionality. The verification time taken by both
human and machine for the modified design was much less
than that of the original design as demonstrated in the pre-
vious section. Based on the above statistics we can conclude
that the verification time can be saved if a notion of “design
for verifiability” is integrated into the design process itself.

References

[I] F. Corella, Z. Zhou, X. Song, M. Langevin and E. Cemy,
“Multiway Decision Graphs for Automated Hardware
Verification”, Formal Methods in System Design, Vol. 10,
pp. 7-46, February 1997.
P. Curzon, ‘The Formal Verification of the Fairisle ATM
Switching Element”, Technical Reports 328 & 329,
University of Cambridge, Computer Lab., March 1994.

[3] P. Curzon, “Tracking Design Changes with Formal
Machine-checked Proof’, The Computer Journal, Vol. 38,

P. Curzon and I. Leslie, “Improving Hardware Designs
whilst Simplifying their Proof‘, Designing Correct Circuits,
Workshops in Computing, Springer-Verlag, 1996.
M. Gordon and T. Melham, Introduction to HOL: A theorem
Proving Environment for Higher-Order Logic. Cambridge
Univ. Press, Cambridge, U.K., 1993.

[6] C. Kern and M. Greenstreet, “Formal Verification in
Hardware Design: A Survey”, ACM Transactions on Design
Automation ofE. Systems, Vol. 4, pp. 123-’193, April 1999.
I. Leslie and D. McAuley, “Fairisle: An ATM Network for
Local Area”, ACM Communication Review, Vol. 19, pp.
237-336, September 1991.
S . Tahar and P. Curzon, “Comparing HOL and MDG: A
case study on the Verification of an ATM Switch Fabric”,
Nordic Jouml of Computing, Vol. 6, pp. 372-402, 1999.
S . Tahar, X. Song, E. Cemy, Z. Zhou, M. Langevin and 0.
Ait-Mohamed, “Modeling and Verification of the Fairisle
ATM Switch Fabric using MDGs”, IEEE Transactions on
CAD of Integrated Circuits and Systems, Vol. 18, No. 7, pp.

[lo] M. Zobair, S. Tahar and P. Curzon, “The Impact of Design
Changes on Verification Using MDGs”, Tech. Report, Dept.
of ECE, Concordia University, October 1999.

[2]

NO. 2, pp. 91-100, July 1995.

141

[5]

[7]

[8]

[9]

956-972, July 1999.

178

